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Abstract
We present a combined experimental and theoretical study of interactions
between two-dimensional electron gases (2DEGs) and terahertz (THz) free-
electron lasers in the presence of quantizing magnetic fields. It is found
both experimentally and theoretically that when an intense THz field and a
quantizing magnetic field are applied simultaneously to a GaAs-based 2DEG
in the Faraday geometry, a strong cyclotron resonance (CR) effect on top of
the magnetophonon resonances can be observed by transport measurements
at relatively high temperatures. With increasing radiation intensity and/or
decreasing temperature, the peaks of the CR are broadened and split due to
magnetophoton–phonon scattering.

1. Introduction

Measurement of photoconductivity in a semiconductor-based two-dimensional electron gas
(2DEG) in the presence of a magnetic field is a powerful tool in studying important phenomena
such as cyclotron resonance (CR) [1]. In recent years, low-temperature photoconductivity in
GaAs-based 2DEG systems in quantizing magnetic fields has been investigated intensively [2–
5]. In these experimental works, such devices as far-infrared (FIR) spectrometers, p-Ge lasers,
B-field-modified light emission from n-InSb, etc, were applied as the FIR or terahertz (1012 Hz
or THz) radiation sources. These measurements have been used to study quantum Hall effects
and to realize important devices such as quantum Hall far-infrared (QHFIR) detectors. On
the other hand, the recent application of long-wavelength free-electron laser (FEL) radiation
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to the investigation of electronic, transport and optical properties of semiconductor-based
electron gas systems [6, 7] has opened up a new field of research in the interactions between
electrons and intense laser fields in semiconductor devices. The current generation of FELs
has already provided a tunable source of linearly polarized intense laser radiation in the THz
bandwidth [8]. More interestingly, a very recently achieved experimental set-up has made it
possible to perform measurements in different semiconductor devices under FEL radiation in
the presence of high magnetic fields.

When an electronic system (e.g. a 2DEG) is subjected simultaneously to THz radiation
and to quantizing magnetic fields, we enter a regime with different competing energies, such
as the electron kinetic energy, electronic subband separation, Fermi energy, cyclotron energy,
photon energy, plasmon energy and phonon energy. These energies (frequencies) are of the
order of microelectronvolts (THz), which implies that intense THz radiation fields can couple
strongly to the semiconductors and modify strongly the processes of momentum and energy
excitation and relaxation of electrons in the systems. Thus, by using a FEL as an intense THz
radiation source, we are able to examine how an intense radiation field affects the fundamental
magnetotransport and magnetooptical properties of, for example, 2DEGs.

At present, in the investigation of semiconductor-based 2DEG systems using THz FELs
in the presence of magnetic fields, most of the published results are obtained from optical
measurements [7]. In this work, we use a rather straightforward experimental set-up to measure
the magnetotransport properties of a GaAs/AlGaAs heterojunction subjected simultaneously to
THz FEL radiation and quantizing magnetic fields in the Faraday geometry. The experimental
results are presented in section 2. In section 3, we develop a tractable theory to understand and
reproduce our experimental findings. Further discussion of the theoretical and experimental
results is presented in section 4 and the conclusions obtained from this study are summarized
in section 5.

2. Experiments and experimental results

In this work, we use FELIX (Free Electron Laser for Infrared eXperiments, The Netherlands)
for the experimental investigation of an Al0.3Ga0.7As/GaAs heterojunction in the presence of
quantizing magnetic fields. The sample was grown by MBE at about 650 K with modulation-
doping (Si: 1.33 × 1018 m−3). It has eight contacts (conventional Hall bar): two current
contacts and six contacts on the sides of the sample. The distance between two adjacent
contacts is 500 µm and the distance between two opposite contacts is 260 µm. The zero-field
and low-temperature electron density and mobility of this sample are found to be 2×1011 cm−2

and 200 m2 V−1 s−1, respectively. During the measurements, the top of the sample is covered
with a metal mask with a small hole in the middle. This hole is placed just above the Hall bar
to ensure that the laser illuminates only the 2DEG and not the contacts. Furthermore, a black
polyethylene filter may be placed above the sample to block ambient light.

In the absence of the FEL irradiation (light-off), the Shubnikov–de Haas oscillations
(SdHo), quantum Hall effects (QHE) and magneto-phonon resonances (MPR) are clearly
observed in this sample. These phenomena at light-off are well known and, therefore, in this
paper, we will focus on the results obtained in the presence of the FEL fields. The measurements
are carried out in the following configuration:

(1) the growth direction of the 2DEG is taken along the z axis and, therefore, the 2DEG is
formed in the xy plane;

(2) the static magnetic field B is applied along the z direction; and
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Figure 1. The difference in ρxx between light-on and light-off as a function of magnetic field
at a fixed radiation wavelength (λ = 75 µm, which corresponds to f = ω/2π = 4 THz) for
different radiation intensities. The radiation intensity is altered through optical attenuation (i.e. 0 dB
corresponds to a radiation without attenuation).

(3) the FEL field with a vector potential A(t) is applied parallel to the B field and polarized
linearly in the 2D plane (taken to be along the x direction).

In this configuration (known as the Faraday geometry for a 2DEG), the magnetic and radiation
fields do not couple to the confining potential of the 2DEG; however, the magnetic field
couples directly to the radiation field. As a result, the effect of the CR can be observed
when the radiation frequency ω approaches the cyclotron frequency ωc. By a simple transport
measurement, i.e. applying a dc current along the x direction and measuring the voltage along
this direction as well, we can examine the dependence of transport coefficients on magnetic
and radiation fields.

It is well known that, at relatively high temperatures and in the absence of a radiation
field, when the longitudinal resistivity ρxx is measured as a function of magnetic field in a
GaAs-based 2DEG, we can observe a series of oscillations described as the magnetophonon
resonance (MPR) effect [9]. This occurs whenever the energy separation between two Landau
levels equals the energy of the longitudinal optic (LO) phonon. When switching on the FEL
radiation, we find that, on top of the MPR effect, we can also observe a strong CR effect
when ω ∼ ωc. In figure 1, the difference in ρxx between light-on and light-off (�ρxx ) at a
temperature T = 150 K is shown as a function of magnetic field at a fixed radiation frequency
for different radiation intensities. It should be noted that the MPR oscillations are observed in
the light-off and light-on data of ρxx , but do not appear appreciably in the difference. From
our experimental data, we find that, in the presence of intense laser radiation, the CR effect
is far stronger than the MPR effect in ρxx and the strength of the CR increases with radiation
intensity. When the radiation frequency is away from the cyclotron frequency, the effect of the
radiation is weak. The most significant experimental result we draw from figure 1 is that, in the
presence of the intense THz laser radiation, we can observe a strong CR effect at relatively high
temperatures, even through simple transport measurements. We know that, in the past, the most
popular way to observe the CR effect is through optical and/or photoresistivity measurements
carried out at very low temperatures (T ∼ 1 K) [1–5, 10] through necessity to satisfy ωτ � 1.
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Figure 2. The difference in ρxx between laser light-on and light-off at a fixed radiation frequency for
different radiation intensities at a relatively low temperature. In these measurements, a polyethylene
filter to block ambient light was removed to obtain a higher FEL radiation level compared to figure 1.
Similar features can be observed up to T ∼ 150 K.

Another interesting experimental result is that,at relatively low temperatures (T < 150 K),
the CR is split into two peaks when rather high-intensity FEL radiation is applied in the Faraday
geometry. In figure 2 we show the difference in ρxx between light-on and light-off at T = 4.2 K
as a function of magnetic field at a fixed radiation frequency for different radiation intensities,
which confirms that the splitting is due to the intense radiation. We note that, under the FELIX
irradiation, the similar phenomenon to that shown in figure 2 can be observed up to T ∼ 150 K
and the effect is more pronounced at a lower temperature. The �ρxx shown in figure 2 is
much smaller than that shown in figure 1 on account of the different temperature of the two
measurements. It should be pointed out that the splitting of the CR peak observed in our
experiments has some features essentially different to those measured in [2–5].

(1) In contrast to those low-temperature results shown in [2–5], under the FELIX irradiation,
the splitting can be observed up to T ∼ 150 K, although a more pronounced splitting can
been seen at relatively low temperatures.

(2) In [2–5], the splitting of the CR peaks at low temperatures is due to the presence of the
relatively large dc currents applied to the sample, whereas in our experiments the splitting
is induced mainly by intense laser fields, as shown in figure 2.

(3) Most importantly, the splitting of the CR peaks measured in [2–5] occurs only at even-
integer filling factors ν = hne/eB (e.g. at ν = 2 or 4), whereas the effect observed in our
experiments can be seen over a wide B-field regime as long as the condition for CR is
satisfied.

From the low-T and light-off data of the total electron density ne = 2 × 1011 cm−2, which
corresponds to ν = 1 at B = 8.27 T, the CR in figures 1 and 2 occurs at B > 10 T—a regime
of ν < 1 where the CR effect depends very little on the filling factor.

From figures 1 and 2 we see that there is a significant shift of the cyclotron frequency
to the higher magnetic field regime under intense THz radiation. This implies such radiation
enhances the electron effective mass. When a 2DEG is subjected to intense radiation fields,
there are two contributions to the higher-than-usual electron effective mass. The first is the
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temperature dependence, which can lead to an increase of about 0.005 me, with me being the
rest electron mass, due to stronger electronic screening. This effect has been discussed and
verified experimentally [11]. The second and more important contribution comes from the
increase in the electron energy under intense laser radiation. Around the cyclotron frequency,
electrons can gain energy quickly from the radiation field via the CR effect and move into
the increasingly non-parabolic regime of the conduction band. Thus, a further enhancement
of electron effective mass can be expected. From our experimental data, we estimate that
the energy gained for an electron in the CR condition is about 220 meV, which is reasonable
under the radiation condition provided by FELIX. Moreover, unlike the filling factor, which is
independent of the electron effective mass m∗, the cyclotron frequency ωc = eB/m∗ depends
on m∗. We note that one normally takes m∗ as that obtained at the bottom of the conduction
band. The results shown in figures 1 and 2 indicate that, in the presence of intense THz laser
radiation and quantizing magnetic fields, the CR effect in a GaAs-based 2DEG depends more
strongly on the electron effective mass than the filling factor.

In order to understand experimental findings detailed above, we present below a tractable
theoretical approach to study the influence of intense laser radiation on the transport and optical
properties of a 2DEG in the presence of a quantizing magnetic field.

3. Theoretical results

It can be shown that, when a magnetic field and an electromagnetic (EM) field are included
within the electron Hamiltonian for a 2DEG in the Faraday geometry, the Landau gauge and
Coulomb gauge can correctly describe the magnetic field and EM field, respectively. Including
the laser field within the Coulomb gauge and the magnetic field within the Landau gauge, the
electron Hamiltonian for a 2DEG subjected to a magnetic field B (applied along the z direction)
and a laser field A(t) (polarized linearly along the x direction) can be written, in the absence
of scattering centres, as

H0(t) = 1

2m∗ [(px − eA(t))2 + (py + eBx)2 + p2
z ] + U(z), (1)

where px = −ih̄∂/∂x is the momentum operator along the x direction, m∗ is the effective
electron mass, A(t) = A0 sin(ωt) is the vector potential induced by the EM field polarized
along the x direction, ω is the radiation frequency, A0 = F0/ω, with F0 being the electric field
strength of the EM field and U(z) is the confining potential energy of the 2DEG along the growth
direction. The time-dependent Schrödinger equation: ih̄∂	(R, t)/∂ t = H0(t)	(R, t), can be
solved analytically [12] where R = (x, y, z). With the time-dependent electron wavefunction
we can derive the retarded Green function for electrons in the (R, t) representation:

G0(R, t; R′, t ′) = 
(t − t ′)
ih̄

∑
N,ky ,n

	∗
N,ky ,n

(R′, t ′)	N,ky ,n(R, t), (2)

which satisfies [ih̄∂/∂ t − H0(t)]G0(R, t; R′, t ′) = δ(R − R′)δ(t − t ′). Here, N is the Landau
level index, n is the index for the nth electronic subband and ky is the electron wavevector along
the y direction. Applying the Green function approach to the time-dependent perturbation
theory, it can be shown that, in the presence of a scattering potential V (R, t), the first-order
contribution to the steady-state electronic transition rate can be calculated by (see the appendix)

Wα′α = 1

h̄2 lim
t−t ′→+∞

∂[G∗
α′α(t, t ′)Gα′α(t, t ′)]

∂(t − t ′)
, (3)

where Gα′α(t, t ′) = ∫ t
t ′ dτ 〈α′, τ |V (R, τ )|α, τ 〉, with |α, t〉 being the time-dependent electron

wavefunction.
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For the case of electron–phonon coupling, the interaction Hamiltonian is

V (R, t) =
∑

Q

[VQaQei(Q·R+ωQt) + V ∗
Qa†

Qe−i(Q·R+ωQ t)], (4)

where Q = (q, qz) = (qx, qy, qz) is the phonon wavevector, ωQ is the phonon frequency,
(a†

Q, aQ) are the canonical conjugate coordinates of the phonon system and VQ is the electron–
phonon coupling coefficient. After introducing the time-dependent electron wavefunction [12]
and scattering potential for electron–phonon coupling (equation (4)) into equation (3), the first-
order contribution to the steady-state electronic transition rate induced by magnetophoton–
phonon scattering in a 2DEG is obtained as

WN ′ N,n′n =
∞∑

m1,m2=−∞
W (m1,m2)

N ′ N,n′n , (5a)

where m1(m2) refers to emission and absorption of photons (magnetons) and the contributions
from different optical and magnetic processes are

W (m1,m2)
N ′ N,n′n = 2π

h̄

∑
Q

[
NQ +

1

2
∓ 1

2

]
|VQ|2Gn′n(qz)CN ′,N (l2q2/2)J 2

m2
(r0q)

× J 2
m1

[
r0

√
q2

x + (ωcqy/ω)2
]
δ(EN ′ − EN + εn′ − εn − m1h̄ω + m2h̄ωc ∓ h̄ωQ).

(5b)

Here, the upper (lower) case refers to absorption (emission) of a phonon with an energy h̄ωQ ,
NQ = (eh̄ωQ/kB T − 1)−1 is the phonon occupation number, Gn′n(qz) = |〈n′|eiqz z |n〉|2 is the
form factor for the electron–phonon interaction along the growth direction, with |n〉 being the
electron wavefunction along this direction, CN,N+J (x) = [N!/(N + J )!]e−x x J [L J

N (x)]2 is
induced by the electron interaction with the magnetic field, with L J

N (x) being the associated
Laguerre polynomials, Jm(x) is a Bessel function and r0 = (eF0)/[m∗(ω2 − ω2

c)]. Moreover,
in the above derivations, the effect of the Zeeman spin splitting has been neglected because
here we are only interested in cyclotron resonance observed at relatively high temperatures,
which is independent of the spin degeneracy and the filling factor.

When a 2DEG interacts with the magnetic and radiation fields in the presence of a scattering
centre, the electronic transitions are accompanied by emission and absorption of photons
and magnetons. As can be seen from equation (5), the total electronic transition rate is the
summation over all possible optical and magnetic processes including multi-photon and multi-
magneton channels. For the case of a high-frequency (ω � 1) and/or low-intensity (F0 
 1)
radiation, such that r0 
 1, the electronic transition rate given by equation (5) becomes the
one obtained by using Fermi’s golden rule derived in the absence of a radiation field. Because
of the coupling between the magnetic and radiation fields, the CR effect can be seen in the
magnetophoton–phonon interactions via the factor r0. Furthermore, we note that, as in the
case where the radiation field is not applied, the presence of a quantizing magnetic field leads
to a singularity of the electronic transition rate. This singular nature is characterized by a δ

function which reflects the fact that energy is conserved during a scattering event.
Using the following properties of a δ function: (1) δ(a −b) = ∫ ∞

−∞ dE δ(E −a)δ(E −b);
(2) δ(x) = (2π)−1

∫ ∞
−∞ dy eixy ; and (3) δ(E) → (�/π)/(E2 + �2), with � being the width

of the broadened scattering states, we find that the contribution from different optical and
magnetic channels to the transition rate induced by magnetophoton–phonon coupling can be
summed up and the total transition rate is given by

WN ′ N,n′n = 8

h̄2ω

∑
Q

[
NQ +

1

2
∓ 1

2

]
|VQ|2Gn′n(qz)CN ′,N (l2q2/2)

∫ ∞

0
dx cos(2ν±x)
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× e−2x�/h̄ω J0[2r0q sin(xωc/ω)]J0

[
2r0

√
q2

x + (ωcqy/ω)2 sin x
]
, (6)

with ν∓ = (EN ′ − EN + εn′ − εn ∓ h̄ωQ)/h̄ω.
From the electronic transition rate, one can evaluate the electronic scattering rate or

relaxation time. The statistically averaged electronic scattering rate (or inverse of the relaxation
time) induced by the magnetophoton–phonon interaction in a 2DEG system is

1/τ =
∑

N ′,N,n′,n
f (EN + εn)[1 − f (EN ′ + εn′)]WN ′ N,n′n

/∑
N,n

f (EN + εn), (7)

with f (E) being the electron energy-distribution function. Using the electronic scattering
rate or relaxation time, the magnetoresistivities can be calculated by, for example, the Drude
model:

ρxx = m∗

nee2

1

τ
and ρxy = B

nee
(8)

where ne is the total electron density of the 2DEG. Thus, we can calculate the magnetotransport
coefficients induced by electron–phonon scattering in the presence of laser and magnetic fields
in the Faraday geometry.

4. Further discussions

It should be noted that the photon energy of THz radiation (h̄ω ∼ meV) is much less than the
energy gaps (Eg ∼ eV) among different bands and valleys in semiconductor materials such as
GaAs. Therefore, the effect of interband and intervalley transitions through corresponding
optical mechanisms can be neglected. As a consequence, the electron–photon–phonon
scattering becomes the limiting factor in determining the transport and optical properties in
semiconductor-based 2DEGs driven by intense THz fields. For polar semiconductors such
as GaAs, the frequency of the phonon oscillation associated with LO modes is at the THz
level so that the electron–LO-phonon coupling is the principal channel for relaxation of THz-
excited electrons in a GaAs-based 2DEG. A strong electron–LO-phonon scattering in the
sample used in the measurements has been evident by the observation of the MPR effect in
ρxx . Hence, in the present theoretical study, we only consider electron interactions with LO
phonons. For electron–LO-phonon scattering: (i) ωQ � ωLO, the LO-phonon frequency in the
long-wavelength range; (ii) NQ � N0 = (eh̄ωLO/kB T − 1)−1; and (iii) the coupling coefficient
is given by the Fröhlich Hamiltonian: |VQ|2 = 4παL0(h̄ωLO)2/Q2, where α is the electron–
LO-phonon coupling constant and L0 = (h̄/2m∗ωLO)1/2 is the polar radius. In the present
theoretical work, our calculations are conducted for the AlGaAs/GaAs heterojunction sample
used experimentally. The sample and material parameters are:

(1) the effective electron mass at the bottom of the conduction band m∗ = 0.0665 me, where
me is the rest electron mass;

(2) the total electron density ne = 2 × 1011 cm−2;
(3) the electron mobility at low temperatures and zero-magnetic field µ0 = 200 m2 V−1 s−1;
(4) the LO-phonon energy h̄ωLO = 36.6 meV; and
(5) the electron–LO-phonon coupling constant α = 0.068.

Furthermore, we consider the situation where only the lowest electronic subband is occupied
by electrons in the heterojunction and apply the usual triangular well approximation to model
the confining potential normal to the interface of the heterojunction [13] so that the form factor
G00(qz) can be determined analytically.
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Figure 3. Magnetophoton–phonon scattering rate and longitudinal resistivity as a function of
magnetic field at a fixed radiation wavelength for different radiation intensities up to F0 =
2 kV cm−1. The long-dashed, broken, full and dotted curves are, respectively, for radiation
intensities F0 = 0.1, 0.3, 1 and 2 kV cm−1.

Since most of our measurements are carried out at relatively high temperatures and high
radiation levels, we use a Maxwellian distribution as the statistical energy distribution function
for electrons through f (E) = ce−E/kB T , where the normalization factor c is determined by
the condition of electron number conservation. To our knowledge, at present, little is known
about how an intense radiation field affects the broadening of the scattering states. Here we
assume that the width of the broadened scattering states, �, is proportional to the width of
the Landau levels, γ , so that � = aγ . In the calculations, we use results obtained from
the self-consistent Born approximation for the Landau level width and take a = 20. Under
the short-range scattering approximation, we have [13] γ = h̄ωc[2/(πµ0 B)]1/2, where the
mobility µ0 = 200 m2 V−1 s−1 is taken from the experimental data.

In figure 3, the scattering rate of magnetophoton–phonon coupling and the longitudinal
resistivity ρxx are shown as a function of magnetic field at a fixed radiation frequency for
different intensities5. The magnetophonon resonances can be seen at B � 5, 7, 11, 21 T
(where ωLO ∼ βωc with β = 4, 3, 2, 1) when the radiation frequency is away from the
cyclotron frequency. A strong effect of the radiation can be seen when ωc ∼ ω, where:

(1) the CR effect can be observed, which can be much more pronounced than the MPR effect
at high intensity radiation;

(2) the strength of the CR increases with increasing radiation intensity up to F0 = 2 kV cm−1

at T = 150 K; and
(3) when higher-intensity radiation is applied, the peak of the CR is broadened. These results

are in line with those observed experimentally (see figure 1).

The magnetophoton–phonon scattering rate and ρxx as a function of magnetic field are shown
in figure 4 at a fixed radiation frequency for different high radiation intensities. We find that,
at T = 150 K and when F0 > 2 kV cm−1, a splitting of the peak of the CR is observed
theoretically and the splitting increases with increasing radiation intensity.

From the theoretical results shown above, we can understand the physical reason behind
what we have seen experimentally. For relatively low intensity radiation and when ω ∼ ωc,

5 The connection between the electric field strength of a laser field (F0) and the laser output power (P) in the vacuum
is P = 0.5

√
ε/µ|F0|2 � 1.32|F0|2 kW cm−2, where F0 is in units of kV cm−1.
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Figure 4. Magnetophoton–phonon scattering rate and longitudinal resistivity as a function of
magnetic field at a fixed radiation wavelength for different radiation intensities when F0 �
2 kV cm−1. The full, dotted and broken curves are, respectively, for radiation intensities F0 = 2,
5 and 10 kV cm−1.

electrons in the system can gain energy efficiently from the radiation field via the CR effect and
lose the energy through the emission of phonons. This two-step process opens up new channels
for electronic transitions and, as a result, the scattering rate and resistivity increase with
increasing radiation intensity. When the radiation intensity is strong enough so that electrons
can gain energy from the radiation field much more quickly than they lose it by the emission
of phonons, the electronic transition events are mainly achieved through cyclotron resonance.
In this case, the effective electron–phonon scattering is suppressed and the magnetophoton–
phonon scattering rate, along with ρxx , decreases with increasing radiation intensity. As a
consequence, the splitting of the peak of the CR can be observed at high intensity radiation
fields when ω ∼ ωc. Therefore, the splitting of the CR that we see experimentally is mainly
due to electron interactions with the radiation fields and scattering centres. Moreover, a
lower temperature results in a weaker electron–phonon coupling because of a smaller phonon
occupation number. This implies that the splitting of the CR can be more easily detected at
relatively low temperatures. It is interesting to mention that recently a similar splitting of
the CR has also been observed experimentally in SiC-based structures [14]. In these recent
experiments, optically detected cyclotron resonance (ODCR) was measured as a function of
relatively low magnetic field (large filling factors) at a fixed microwave radiation frequency for
different radiation powers. The splitting of the CR is clearly seen when the radiation power is
larger than 100 mW at T = 1.6 K for SiC. In that work, the authors also attributed the splitting
of the CR effect to electron–phonon interactions.

From figures 3 and 4, we note that, in the presence of intense THz radiation, the rate for
electronic scattering in a GaAs-based 2DEG via magnetophoton–phonon interaction is of the
order of the THz radiation frequency (i.e. ωτ ∼ 1). This suggests that the intense THz radiation
can modify strongly the processes of momentum and energy excitation and relaxation of
electrons in the system in the presence of quantizing magnetic fields, and this is the main reason
why a strong influence of the radiation field on magnetotransport coefficients can be observed
experimentally. The tractable theoretical approach developed here can reproduce qualitatively
the results obtained experimentally and can be used to understand those fundamentally new
experimental findings. It should be noted that, in the theoretical results presented, the parameter
r0 diverges when ωc ∼ ω. This is mainly because, in the model, we only consider an ideal
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situation with features such as a ‘pure’ radiation frequency and a ‘strict’ linear polarization
of the radiation field. For real radiation sources, e.g. FELs, the radiation frequency is slightly
broadened and the linear polarization of the radiation may be imperfect. Such effects dampen
the singular nature of r0 when ωc ∼ ω.

5. Conclusions

In this work, we have found experimentally that, when a GaAs-based 2DEG system is
subjected simultaneously to intense THz laser fields and to quantizing magnetic fields, strong
cyclotron resonance (CR) on top of the magnetophonon resonances can be observed simply by
conventional magnetotransport measurements, carried out at relatively high temperatures. The
strength of the CR increases with increasing radiation intensity and the effect of the radiation
on ρxx becomes weak when the radiation frequency is away from the cyclotron frequency. For
the case of intense THz radiation, the peak of the CR observed in ρxx is split into two and this
effect is more pronounced at a lower temperature. The features of the split CR peaks under FEL
irradiation are different from those reported in [2–5]. Our theoretical results indicate that these
interesting radiation phenomena are mainly induced by magnetophoton–phonon scattering in
the 2DEG system.

We have demonstrated that, for GaAs-based 2DEGs, strong magnetooptical effects can
be observed when the magnetic field B ∼ 10 T, the radiation frequency f ∼ 1 THz and
the radiation intensity F0 ∼ 1 kV cm−1. These radiation conditions have been realized by
the current generation of THz FELs. We believe that now it has become possible to study
magnetotransport and magnetooptical properties of semiconductor-based electron gas systems
in the presence of intense THz laser radiation and we expect that more interesting and important
experimental and theoretical results from this research field will arise in the near future.
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Appendix

In this appendix, on the basis of a time-dependent perturbation theory [15],we present a general
approach to calculate the steady-state electronic transition probability in a (R, t) or (space,
time) representation. In the absence of a scattering centre, if |α, t〉 = 	α(R, t) is the solution
of the time-dependent Schrödinger equation

[ih̄∂/∂ t − H0(t)]	α(R, t) = 0, (A.1)

with α being the quantum number, the retarded Green function G0(R, t; R′, t ′) and the
transformation function U0(R, t; R′, t ′) can be determined from

G0(R, t; R′, t ′) = 
(t − t ′)
ih̄

U0(R, t; R′, t ′) (A.2a)

and

U0(R, t; R′, t ′) =
∑

α

	∗
α(R′, t ′)	α(R, t). (A.2b)
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The Green function and the transformation function satisfy, respectively,

[ih̄∂/∂ t − H0(t)]G0(R, t; R′, t ′) = δ(R − R′)δ(t − t ′) (A.3a)

and

[ih̄∂/∂ t − H0(t)]U0(R, t; R′, t ′) = δ(R − R′). (A.3b)

Moreover, the transformation function has features such as

U0(R, t ′; R′, t ′) = δ(R − R′), (A.4a)

	α(R, t) =
∫

d3R′ U0(R, t; R′, t ′)	α(R′, t ′), (A.4b)
∫

d3R U∗
0 (R, t; R′, t ′)U0(R, t; R′, t ′) =

∫
d3R′ U∗

0 (R, t; R′, t ′)U0(R, t; R′, t ′) = 1, (A.4c)

and ∫
d3R1 U∗

0 (R, t; R1, t1)U0(R1, t1; R′, t ′) = U0(R, t; R′, t ′). (A.4d)

When a scattering potential V (R, t) is present, the Green function G(R, t; R′, t ′) and the
transformation function U(R, t; R′, t ′) should satisfy

G(R, t; R′, t ′) = 
(t − t ′)
ih̄

U(R, t; R′, t ′), (A.5a)

[ih̄∂/∂ t − H0(t) − V (R, t)]G(R, t; R′, t ′) = δ(R − R′)δ(t − t ′), (A.5b)

and

[ih̄∂/∂ t − H0(t) − V (R, t)]U(R, t; R′, t ′) = δ(R − R′), (A.5c)

and the transformation function should have features similar to equation (A.4). Hence,
U(R, t; R′, t ′) can be obtained from G(R, t; R′, t ′) which can be determined by Dyson’s
equation [16] in the (R, t) representation:

G(R, t; R′, t ′) = G0(R, t; R′, t ′) +
∫

d3R1 dt1 G(R, t; R1, t1)V (R1, t1)G0(R1, t1; R′, t ′).

(A.6)

The integral equation given by equation (A.6) can be solved by using an iterative approach,
which is as follows:

G(R, t; R′, t ′) = 
(t − t ′)
ih̄

∞∑
n=0

Un(R, t; R′, t ′), (A.7a)

where U0 is given by equation (A.2b):

U1 = 1

ih̄

∑
α,α′

	∗
α′(R′, t ′)	α(R, t)Gαα′ (t, t ′), (A.7b)

U2 = 1

(ih̄)2

∑
α,α1,α

′
	∗

α′(R′, t ′)	α(R, t)Gαα1(t, t ′)Gα1α′ (t, t ′), (A.7c)

and

Un = 1

(ih̄)n

∑
α,α1,...,αn−1,α

′
	∗

α′(R′, t ′)	α(R, t)Gαα1(t, t ′)Gα1α2(t, t ′) · · · Gαn−1α
′(t, t ′). (A.7d)

Here

Gα′α(t, t ′) =
∫ t

t ′
dτ 〈α′, τ |V (R, τ )|α, τ 〉. (A.7e)
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Thus, in the presence of a scattering centre, the transformation function is obtained as

U(R, t; R′, t ′) =
∞∑

n=0

Un(R, t; R′, t ′). (A.8)

From the transformation function, the averaged probability amplitude for an electronic
transition from an initial state α at time t to a final state α′ at time t ′ is obtained as

Pα′α(t, t ′) =
∫

d3R 	∗
α(R, t)

∫
d3R′ 	α′(R′, t ′)U(R, t; R′, t ′) = 1 +

∞∑
n=1

P(n)
α′α(t, t ′), (A.9a)

where

P(1)
α′α(t, t ′) = Gα′α(t, t ′)

ih̄
, (A.9b)

P(2)

α′α(t, t ′) = 1

(ih̄)2

∑
α1

Gα′α1(t, t ′)Gα1α(t, t ′), (A.9c)

and

P(n)

α′α(t, t ′) = 1

(ih̄)n

∑
α1,α2,...,αn−1

Gα′α1(t, t ′)Gα1α2(t, t ′) · · · Gαn−1α(t, t ′). (A.9d)

Furthermore, by definition, the steady-state electronic transition probability for the scattering
of an electron from a state α to a state α′ is given by

Wα′α = lim
t−t ′→+∞

∂|Pα,α(t, t ′)|2
∂(t − t ′)

. (A.10)

In particular, the first-order contribution to the steady-state electronic transition rate is

W (1)
α′α = 1

h̄2 lim
t−t ′→+∞

∂G∗
α′α(t, t ′)Gα′α(t, t ′)

∂(t − t ′)
. (A.11)
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